

\section*{Terminal Details : \\ |  | 0.6 N.m (6 Lb.in) |
| :---: | :---: |
| $\square$ | $1 \times 4.0 \mathrm{~mm}^{2}$ <br> Solid/Stranded Wire |
| AWG | $1 \times 20$ to 10 | \\ | AWG | CURRENT (A) |
| :---: | :---: |
| 12 | 5.00 |
| 14 | 3.33 |
| 16 | 1.67 |}

NOTE: Use Cu Wire of $75^{\circ} \mathrm{C}$ Only

## Installation:

DIN - Rail Mounting : The Timer should be mounted on 35 mm symmetrical DIN - Rail.

## Wiring Diagrams:



ON-Delay and Interval Timer

## Function Diagram

1. ON Delay :

When the supply voltage is applied, timing starts
After the set timing 'Ts' has elapsed, output relay turns ON and remains ON till the supply is removed


## 2. Interval :

When the supply voltage is applied, output relay turns ON and timing starts. Output relay turns off after the set timing 'Ts' has elapsed and mains off until next power


NOTE: For 12WDTCR, timing (Ts) can be updated during run time, by changing Rat (T) and Nottiplier ( t ) values. During time delay in progress, if time setting is changed then new set time
Men deducted from elapsed time will be applied.
For other Cat ID's, power should be reset to update the timing (Ts)
Overall dimension :
DIN Rail Mounting :


ELECTRONIC TIMER
SERIES : MICON ${ }^{\text {TM }} 175$

## Cat. No. : 11WDTC <br> 12WDTC <br> 12WDTCR <br> $C \in \underset{\text { Rass } \square}{\square}$

## Features:

1. Wide Timing Range- 100 ms to 100 h 2. Suitable for DIN-Rail \& Base Mounting 3. Compact Size \& Easy to instal

## Caution :

1.Always follow instructions stated in this product leaflet
2 Before installation, check specifications agree with the intended application.
3.Installation
3. Instalation
electrician
4.If user wants to reset timer, one way to do this is to switch off the timer \& then set timing \& range preset to required will take new set time. For 12WDTCR user can change the timing in run time. 5. Setting of all the potentiometers should be in clockwise direction only.
6. Use 250 mA slow blow fuse in series
with the above mentioned products.
that is minimum $200 \%$ of the size of the
timer in the end use application. Use Cu
wire of $75^{\circ} \mathrm{C}$ for connections.
8. Product innovation being a continuous process, we reserve the right to make any alteration without prior notice


## Terminal Details : <br> Signal Off Delay Timer

|  | $\begin{array}{l\|l} \hline & 0.5 \mathrm{~N} \cdot \mathrm{~m}(4.4 \mathrm{~b} . \mathrm{in}) \text { to } \\ 0.7 \mathrm{~N} \cdot \mathrm{~m}(6.21 \mathrm{~b} . \mathrm{in}) \end{array}$ |
| :---: | :---: |
| $\square$ | $2 \times 2.5 \mathrm{~mm}^{2}$ |
| AWG | 24 to 10 |
| AWG | CURRENT (A) |
| 10 | 5.00 |
| 12 | 4.38 |
| 14 | 3.75 |
| 16 | 3.13 |
| 18 | 2.50 |
| 20 | 1.88 |
| 22 | 1.25 |
| 24 | 0.63 |

NOTE: Use Cu Wire of $75^{\circ} \mathrm{C}$ Only.

## Installation :

DIN - Rail Mounting : The Timer should be mounted on 35 mm symmetrical
be mounted
DIN - Rail.
Screw Mounting: For screw mounting, pull out the DIN Rail clips half way. Use 2 no's of M4 screws to mount the product directly on back.

## Overall Dimension :



Din Rail Mounting :


Cat. No.: 11RDT4, 12RDT4, 15DDT4

## Timing Diagram :

## Wiring Diagrams :

## Sensor Connection Diagrams :

When the supply voltage is applied \& the B1 input is energized the output relay energizes. When B1 is de-energized time 'Ts commences. At the end of ''Ts' the output relay
De-energizes. If B1 is energized again before the end of Ts, Ts resets to zero so that when B1 is de-energized the full set time of 'Ts' operates.

| Mode | Function Diagram |
| :---: | :---: |
| Signal Off |  |
| Delay | B1 |


A. $\begin{aligned} & \text { Do not apply more than 27VAC/DC to A3 terminal of } \\ & 111 \text { RDT4 \& } 12 \text { ROT } 4 \text {. }\end{aligned}$

Do not apply more than 14.4 VDC to A 3 terminal of 15 DDT4.


## ELECTRONIC TIMER

## SERIES : MICON-175 TM

Cat. No. : 11RDT4
12RDT
15DDT4

## ( $\in$ R Roнs

Features:

1. Wide Input Supply and Signal Range 3. Suitable for Din-Rail \& Base Mounting. 4. Compact Size \& Easy to install
2. High Precision \& Accuracy. 24VAC/240VAC proximity' Sensors

## Caution :

1.Always follow instructions stated in this product leaflet.
n, check that the specifications agree with the intended application
3.Installation to be done by skilled
electrician.
4.If user wants to reset timer, one way to do this is to switch off the timer \& then
set timing \& range preset to required position. In this case, Timer will reset \& will take new set time.
5. Setting of all the potentiometers should be in clockwise direction only.
6. Use 250 mA slow blow fuse in series
7.The timers shall be placed in an enclosure that is minimum $200 \%$ of the size of the timer in the end use application. Use Cu wire of $75^{\circ} \mathrm{C}$ for connections.
8. Product innovation being a continuous process, we reserve the right to make any alteration without prior notice.

[^0]

## ELECTRONIC TIMER - SERIES MICON ${ }^{\text {TM }} 175$

## MULTI-FUNCTION

Series 175 1M MULTIMODE Timer is manufactured to a high degree of precision \& accuracy. The time settings are stepless and can be set with the knob.

## FUNCTION DIAGRAM

## a) Signal On Delay:

Initially if signal $S$ is opened at Power On, it will work as On Delay. If signal S is closed at Power On, delay Ts will not start. Delay Ts will start only when the signal is removed and after delay of Ts, Relay R will get ON. If before completion of delay Ts, closing the signal stops the timing and starts again when the signal gets opened. a



## b) Cyclic On/Off: On start

Initially the relay $(R)$ is On for period Ts after the power is applied. The relay (R) keeps on changing its status til power is removed with On and period = Ts.



## c) Cyclic Off/ On : Off start

Initially the relay (R) is Off for period Ts after the power is applied. The relay ( $R$ ) keeps on changing its status till power is removed with On and Off period = Ts.


## d) OFF Delay, Constant Supply (Signal Off Delay)

R energizes when Switch ( S ) is closed. Timing commences after Switch (S) is opened and then the relay deenergizes.
d
U


## e) Signal Off/On

When Switch ( S ) is closed or opened for preset time Ts, the relay changes its state after time duration Ts.

## f) Accumulative Delay On Signal

2) INTERVAL
open. Closing Switch ( $S$ ) pauses timing. Timing res ( S ) is Selon when Switch ( S ) opened again Renergizes at the end of during execution of timing, it will work as Interval



## g) Impulse On/Off

R energizes for the period Ts when Switch (S) is opened or closed. When timing commences, changing state of Switch (S) does not affect $R$ but resets timer.


## h) ON Impulse, Constant Supply

When switch (S) is closed and remains closed output relay energizes until timing is over. If Switch ( S ) is Opened during period Ts, R resets
U
B1 7 mom m


## i) OFF Impulse, Constant Supply

When Switch ( $S$ ) is opened, $R$ energizes and de-energizes when timing is over. If Switch ( S ) is closed during period Ts R resets


## j) Leading Edge Bi-stable or Step relay

After every Signal, the output contact changes state alternately switching from open to closed \& vice versa


## Derived Modes:

## 1) ON Delay

Select mode Accumulative On Delay (f) keeping signal pen before power ON and during execution of time as well, it will work as ON Delay


## OPTIONALLOAD

## INSTALLATION:

a. DIN-Rail Mounting:

The Timer should be mounted on 35 mm symmetrica DIN Rail.

## SENSOR CONNECTION DIAGRAM:



| Product Standard | IEC 61812-1 |  |
| :--- | :--- | :--- |
| Safety: |  |  |
| Test Voltage between I/P and O/P | IEC 60947-5-1/UL 508 $\quad 2 \mathrm{KV}$ |  |
| Test Voltage between all terminals and enclosure | IEC 60947-5-1/UL 508 2.5 KV |  |
| Impulse Voltage between I/P and o/p | IEC 60947-5-1 | 4 KV |
| Single Fault | IEC 61010-1 |  |
| Insulation Resistance | UL 508 | $>50 \mathrm{k} \Omega$ |
| Leakage Current | UL 508 | $<3.5 \mathrm{~mA}$ |
| Environmental: |  |  |
| Cold Heat | IEC 60068-2-1 |  |
| Dry Heat | IEC 60068-2-2 |  |


| TECHNICAL SPECIFICATIONS: |  |
| :---: | :---: |
| Cat. No.: | 1CJDT0 |
| SUPPLY CHARACTERISTICS: |  |
| Supply Voltage 叫 | 12-240 VAC / DC |
| Supply Variation | -15\% to +10 \% of 叫 |
| Frequency | 50 to 60 Hz , ( $\pm 3 \mathrm{~Hz}$ ) |
| Power Consumption (Typical) | 5 VA |
| RELAY O/P CHARACTERISTICS: |  |
| Contact Arrangement | $1 \mathrm{C} / \mathrm{O}$ Potential free contacts |
| Contact Rating (Resistive Load) | 8 A (Res.) @ $250 \mathrm{~V} \mathrm{AC}, \mathrm{5A} \mathrm{at} 24 \mathrm{VDC}$ |
| Contact Material | AgNi |
| Electrical Life | 50,000 Operations min. |
| Mechanical Life | 10,000,000 Operations min. |
| FEATURE CHARACTERISTICS: |  |
| Timing Ranges | $0.1 \mathrm{~s} ; 1 \mathrm{~s} ; 10 \mathrm{~s} ; 1 \mathrm{~min} . ; 10 \mathrm{~min}$; $1 \mathrm{~h} ; 10 \mathrm{~h} ; 100 \mathrm{~h}$ |
| Setting Accuracy | +/-5\% of full scale |
| Repeat Accuracy | +/-1\% |
| Mode Adjustment | Flush (Refer "Functions diagram") |
| LED Indication on front panel | Green LED for Power, Yellow LED for Relay. |
| Mounting | Din-Rail |
| Dimensions ( W X H X ) | $18 \times 60 \times 85$ ( in mm) |
| Weight (Unpacked) | 72 gms . |
| Humidity | 95\% Rh Non Condensing |
| Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ |
| Storage Temperature | $-15^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Housing Color | Dark Gray |
| Max. Operating Altitude | 2000 m |
| Housing | Flame retardant (UL 94-V0) |
| Degree \& Protection | IP - 20 for Terminal, IP - 40 for Housing. |
| Pollution Degree | II |
| Isolation ( I/P and O/P) | 2 KV |
| Isolation (Terminal and Casing ) | 2.5 KV |
| Type of Insulation | Reinforced |
| Certifications | CE, RoHS, UL |
| Initiate Time | Max. 100 ms |
| Reset Time | Max. 200 ms |
| EMI / EMC: |  |
| Harmonic Current Emissions | IEC 61000-3-2 Class A |
| ESD | IEC 61000-4-2 Level II |
| Radiated Susceptibility | IEC 61000-4-3 Level III |
| Electrical Fast Transient | IEC 61000-4-4 Level IV |
| Surge | IEC 61000-4-5 Level III |
| Conducted Susceptibility | IEC 61000-4-6 Level III |
| Voltage Dips \& Interruptions (AC) | IEC 61000-4-11 For > 18 VAC/DC, Criteria A, For $<18 \mathrm{VAC} / \mathrm{DC}$, Criteria B. |
| Voltage Dips \& Interruptions (DC) | IEC 61000-4-29 For > 18 VAC/DC, Criteria A, For $<18$ VAC/DC, Criteria B. |
| Conducted Emission | CISPR 11 Class A |
| Radiated Emission | CISPR 11 Class A |



TERMINAL DETAILS:


Use Cu wire of $75^{\circ} \mathrm{C}$ only.

| AWG | CURRENT (A) |
| :--- | :--- |
| 10 | 5.00 |
| 12 | 5.00 |
| 14 | 3.33 |
| 16 | 1.67 |
| 18 | 1.00 |
| 20 | 1.00 |

## ELECTRONIC TIMER - SERIES MICON™ 175 ASYMMETRIC ON-OFF / OFF-ON TIMER

Series 175 Asymmetric On-Off / Off-On Timer is manufactured to a high degree of precision \& accuracy. The time settings are stepless and can be set with the knob.

## Feature:

Asymmetric On-Off / Off-On Timer:
17.5 mm wide

- Time setting from: $0.1 \mathrm{~s} ; 1 \mathrm{~s} ; 10 \mathrm{~s} ; 1 \mathrm{~min} ; 10 \mathrm{~min}$;
$1 \mathrm{~h} ; 10 \mathrm{~h} ; 100 \mathrm{~h}$.
- LED status indicators: Power On (Green) and Relay
status (Yellow).
- Cadmium free contact material.


## FUNCTION DIAGRAM :

A) ASYMMETRIC OFF - ON

If the link is not connected at A1-B1 and Supply is turned ON. Timing starts and Output Relay remains OFF for set Time. After set OFF Time has elapsed, Output Relay turns ON and remains ON till the set ON time has elapsed and the cycle repeats
B) ASYMMETRIC ON - OFF

If the link is connected at A1-B1 and supply is turned ON Output Relay turns On and Timing starts. Output Relay turns OFF after the Set ON time has elapsed and remains OFF till the Set OFF time has elapsed and the cycle repeats.


## NOTE

1. T1 and T2 are detent pots for Time selection
2. t1 and t2 are smooth pots for Range Selection

## Connection Diagram:



## MODE SELECTION

| MODE | SELECTION |
| :---: | :--- |
| ASYMMETRIC OFF - ON | Do not connect Link <br> between A1 \& B1 |
| ASYMMETRIC ON - OFF | Connect Link between <br> A1 \& B1 |

Overall product dimensions and mounting details :


## INSTALLATION:

a. DIN-Rail Mounting

The Timer should be mounted on 35 mm symmetrical DIN Rail.

## CAUTION:

1. Always follow the instructions stated in this product leaflet
2. Before installation, check to ensure that the specifications agree with the intended application
3. Installation to be done by skilled electrician.
4. Automation \& Control devices must be properly installed so that they are protected against any risk of involuntary actuations.
5. Suitable dampers should be provided in case of excessive vibrations.
6. Use of 250 mA fuse in series with product supply is recommended, for protection
7. The timers shall be placed in an enclosure that is minimum $200 \%$ of the size of the timer in the end use application
8. Setting of all potentiometers must be done in the clockwise direction only.
9. At power on to detect the proper mode, 100 ms (minimum) stable signal input should be present. 10. Keep at least 1 cm clearance from both side while using this product.

## NOTE:

Product innovation being a continuous process, we reserve the right to alter specifications without any prior notice.

| Product Standard | IEC 61812-1 |
| :--- | :--- |
| Safety: |  |
| Test Voltage between I/P and O/P | IEC 60947-5-1 $\quad 2 \mathrm{KV}$ |
| Test Voltage between all terminals and enclosure | IEC 60947-5-1 $\quad 2.5 \mathrm{KV}$ |
| Impulse Voltage between I/P and o/p | IEC 60947-5-1 4 KV |
| Single Fault | IEC 61010-1 |
| Insulation Resistance | UL 508 |
| Leakage Current | UL 508 |
| Environmental: |  |
| Cold Heat | IEC $60068-2-1$ |
| Dry Heat | IEC 60068-2-2 |

Cat. No.:
110DT4 (R8)
120DT4 (R8)
150DT4 (R8)
11 BDT4 (R8)
$11 B D T 4$ (R8)
$12 B D T 4$ (R8)
15BDT4 (R8)
15BDT4
2SDT0

## $C \in$ Rous []

## Features

1. Wide Input Supply Range.
2. Wide Timing Range -300 ms to 30 hr .
. Compact Size \& Easy to install
3. Suitable for Din-Rail \& Base Mounting

High Precision \& Accuracy.


| AWG | CURRENT (A) |
| :---: | :---: |
| 12 | 4.38 |
| 14 | 3.75 |
| 16 | 3.13 |
| 18 | 2.50 |
| 20 | 1.88 |

NOTE: Use Cu Wire of 75 Dec. C Only..

## Model

- On Delay Timer
- One Shot Timer

Installation:
DIN - Rail Mounting : The Timer shald be mounted on 35 mm symmetrical DIN - Rail.

On Delay Timer
Cat. No.: 110DT4 (R8), 120DT4 (R8), 120DTA (R1), 150DT4 (R8)

## Mode Description:

Timing starts as soon as the supply is applied and Green LED Blinks. During the last 1 minute of the remaining time the Green LED blinks with higher rate. The Output Relay turns On after the set time and is indicated by the Red ED and Green LED steady ON.


One Shot Timer
One Shot Timer 15BDT4 (R8)

## Mode Description

The timing starts as soon as the supply is applied and Green LED Blinks. During the las 1 minute of the remaining time the Green LED blinks with higher rate. The Output Relay turn On for 1 sec. after the set time has elapsed LED steady ON.
Timing Diagram:
Timing Diagram:

| Mode | Function <br> Diagram |
| :---: | :--- |
| One <br> Shot | R- |
|  | T 15 |

## STAR - DELTA Timer

## Cat No.: 11SDTO, 12SDTO

## Mode Description

When the supply is applied, Output Star Relay turns ON. After completion of set Star ON time, Star Relay turns OFF and Delta Relay
turns ON after 60 ms (Pause Time) and remains ON till the Supply is present. "Star ON" is indicated by Red LED 1. "Delta O" is indicated by Red LED 2
Timing Diagram:

| 吊 | $-$ |
| :---: | :---: |
| $17 C\left[\begin{array}{l} \lambda_{18} \\ \Delta_{28} \end{array}\right.$ |  |

Ts = 人TIME, P = PAUSE TIME

## Connection Diagrams:

120DTA (R1)/120DT4 (R8)/


110DT4 (R8)/11BDT4 (R8):


150DT4 (R8)/15BDT4 (R8):


12SDTO/11SDTO:


Recommended Star - Delta Control Circuit:


F1 - Mains Protection Fus
2) F2 - Timer Protection Fus
3) O.L.R - Over Load Relay
4) M1
5) - First 'NO' Contact of Main Contactor Main Contactor for driving Motor Star Contactor
'NO' Contact of Star Contactor 'NC' Contact of Star Contactor Delta Contactor
'NC' Contact of Delta Contactor Star Contact of Timer $(\lambda-\Delta)$ Sar Contact of Timer $(\lambda-\Delta)$ Star Delta Timer $(\lambda-\Delta)$

Caution
1.Always follow instructions stated in this product leaflet.
2.Before installation, check that the specifications agree with the intended application.
electrician to be done by skilled
4.Changing Range and Timing Presets in power ON condition when the On Delay period has already started, will have no effect. It has to be set before powering ON the timer
5.If user wants to reset timer one way to
do this is to switch off the timer \& then set timing \& range preset to required position. In this case, Timer will reset \& will take new set time.
6. Setting of all the potentiometers should be in clockwise direction only.
with the mA slow blow fuse (F2) in series With the above mentioned products. that is minimum $200 \%$ of the size of the timer in the end use application. Use Cu wire of $75^{\circ} \mathrm{C}$ for connections.
9.The technical information provided in this the press. Product innovation being a continuous process, we reserve the righ to make any alteration without prior notice.

Overall Dimension:


Din Rail Mounting :




## ELECTRONIC TIMER - SERIES MICON ${ }^{\text {TM }} 175$

## MULTI-FUNCTION

Series 175 1M MULTIMODE Timer is manufactured to a high degree of precision \& accuracy. The time settings are stepless and can be set with the knob.

## FUNCTION DIAGRAM

## tn) Signal On Delay:

Timing starts when Switch (S) is closed. R energizes at nd of period Ts and de-energizes when Switch ( $S$ ) is opened

${ }^{\mathrm{B} 1} \mathrm{R} \underset{\mathrm{R}}{1}$

## cnf) Cyclic On/Off: On start

nitially the relay (R) is On for period Ts after the power is applied. The relay (R) keeps on changing its status till power is removed with On and period = Ts.
cnf
UTmomombly


## cfn) Cyclic Off/ On : Off start

Initially the relay ( $R$ ) is Off for period Ts after the power is applied. The relay (R) keeps on changing its status till power is removed with On and Off period = Ts


## sf) OFF Delay, Constant Supply (Signal Off Delay)

R energizes when Switch ( S ) is closed. Timing commences after Switch (S) is opened and then the relay de energizes.


## sfn) Signal Off/On

When Switch (S) is closed or opened for preset time Ts, the relay changes its state after time duration Ts.
$\stackrel{\operatorname{sfn}}{\mathrm{s} n}$

${ }_{R}^{\mathrm{B}} \mathrm{T}_{\mathrm{TS}}$

## san) Accumulative Delay On Signal

Time commences as supply is present and Switch ( S ) is open. Closing Switch ( S ) pauses timing. Timing resumes when Switch ( S ) opened again R energizes at the end of timing.

R energizes for the period Ts when Switch ( S ) is opened or closed. When timing commences, changing state of Switch (S) does not affect $R$ but resets timer.


## iL) ON Impulse, Constant Supply

When switch (S) is closed and remains closed output relay energizes until timing is over. If Switch ( S ) is Opened during period Ts, R resets.


## it) OFF Impulse, Constant Supply

When Switch ( $S$ ) is opened, $R$ energizes and de-energizes when timing is over. If Switch ( $S$ ) is closed during period Ts

## R resets.



## sbi) Leading Edge Bi-stable or Step relay

After every Signal, the output contact changes state, alternately switching from open to closed \& vice versa.


## Derived Modes:

## 1) ON Delay

1. Select mode signal On Delay (stn) and close Switch (S) or short A1-B1 before power ON, it will work as ON Delay. 2. Select mode Accumulative On Delay (san) keeping signal open before power ON and during execution of time as well, it will work as ON Delay

## 1



## 2) INTERVAL

Select mode (iL) ON Impulse. If Switch (S) is closed during A1-B1 before making power supply ON and during execution of timing, it will work as Interval

## INSTALLATION:

a. DIN-Rail Mounting:

The Timer should be mounted on 35 mm symmetrica DIN Rail.

## SENSOR CONNECTION DIAGRAM:

Overall product dimensions and mounting details :


OVERALL DIMENSIONS 65.0X85.0X18.0

WIRING DIAGRAM:


| Product Standard | IEC 61812-1 |  |
| :--- | :--- | :--- |
| Safety: |  |  |
| Test Voltage between I/P and O/P | IEC 60947-5-1/UL 508 2 KV |  |
| Test Voltage between all terminals and enclosure | IEC 60947-5-1/UL 508 2.5 KV |  |
| Impulse Voltage between I/P and o/p | IEC 60947-5-1 | 4 KV |
| Single Fault | IEC 61010-1 |  |
| Insulation Resistance | UL 508 | $>50 \mathrm{k} \Omega$ |
| Leakage Current | UL 508 | $<3.5 \mathrm{~mA}$ |
| Environmental: |  |  |
| Cold Heat | IEC 60068-2-1 |  |
| Dry Heat | IEC 60068-2-2 |  |


[^0]:    e. If supply is looped win relay pole, then surge lever IIr wirbe applicable (for 11RDT4 \& 12RDT).

